Motoneurons have different membrane resistance during fictive scratching and weight support.
نویسنده
چکیده
The passive membrane properties of motoneurons may be affected in a behavior-specific manner because of differences in synaptic drive during different motor behaviors. To explore this possibility, the changes in input resistance (R(in)) and membrane time constant (tau(m)) of single extensor motoneurons were compared during two different types of motor activities: fictive scratching and fictive weight support. These two activities were selected because the membrane potential of extensor motoneurons follows a very different trajectory during fictive scratching (multiphasic, mostly rhythmic trajectory) and fictive weight support (monophasic, tonic trajectory). The intracellular recordings were performed in vivo in the immobilized, decerebrate cat using QX-314-containing microelectrodes to block action potentials. The R(in) and tau(m) at rest (control) were reduced substantially during all phases of fictive scratching. In contrast, R(in) and tau(m) changed only little during fictive weight support. Such a differential effect on the membrane resistance was observed even in motoneurons in which the peak voltage of the rhythmic depolarization during scratching was similar to the peak voltage of the tonic depolarization during weight support. The differential effect was attributed mainly to a difference in synaptic drive and, in particular, to a larger amount of inhibitory synaptic activity during fictive scratching. The present study demonstrates how the same motoneuron can have a different membrane resistance while participating in two different behaviors. Such tuning of the membrane resistance may provide motoneurons with behavior-specific integrative capabilities that, in turn, could be used advantageously to increase motor performance.
منابع مشابه
Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
We have compared state-dependent transmission through oligosynaptic (minimally disynaptic) reflex pathways from low-threshold cutaneous and muscle afferents to some flexor and extensor lumbosacral motoneurons during fictive locomotion and scratching in decerebrate unanesthetized cats. As reported in earlier work, oligosynaptic cutaneous excitatory postsynaptic potentials (EPSPs) in flexor digit...
متن کاملProprioceptive control of extensor activity during fictive scratching and weight support compared to fictive locomotion.
At rest, extensor group I afferents produce oligosynaptic inhibition of extensor motoneurons. During locomotor activity, however, such inhibition is replaced by oligosynaptic excitation. Oligosynaptic excitation from extensor group I afferents plays a crucial role in the regulation of extensor activity during walking. In this study we investigate the possibility that this mechanism also regulat...
متن کاملHind limb motoneurons activity during fictive locomotion or scratching induced by pinna stimulation, serotonin, or glutamic acid in brain cortex‐ablated cats
In brain cortex-ablated cats (BCAC), hind limb motoneurons activity patterns were studied during fictive locomotion (FL) or fictive scratching (FS) induced by pinna stimulation. In order to study motoneurons excitability: heteronymous monosynaptic reflex (HeMR), intracellular recording, and individual Ia afferent fiber antidromic activity (AA) were analyzed. The intraspinal cord microinjections...
متن کاملActivity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses.
In the preceding companion article (Berkowitz and Stein, 1994b), we showed that many descending propriospinal neurons in the turtle were rhythmically activated during two different motor patterns, fictive rostral scratching and fictive pocket scratching. In this article, we present phase analyses of the activity of each such neuron during fictive scratching. Each neuron's activity was concentra...
متن کاملPhysiology and morphology of shared and specialized spinal interneurons for locomotion and scratching.
Distinct types of rhythmic movements that use the same muscles are typically generated largely by shared multifunctional neurons in invertebrates, but less is known for vertebrates. Evidence suggests that locomotion and scratching are produced partly by shared spinal cord interneuronal circuity, although direct evidence with intracellular recording has been lacking. Here, spinal interneurons we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2002